Senators

DG: Ondrej Ptacek Morale : 50 Moyenne d'Équipe : 57
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Miikka Salomaki (R)XX100.00824683776574686560404268505151051620
2Robby Fabbri (R)XXX100.00655286836077686961464960505353049620
3Sergei PlotnikovXX100.00774666775853676560373860504848048570
4Tom KuhnhacklXX100.00684466705558736460444265504747051570
5Michael McCarron (R)XX100.00769958666056616379394057504545054560
6Viktor TikhonovXXX100.00664366725456606360394160505757048560
7Zack Mitchell (R)X100.00726875625370656169333958564444051550
8Daniel CatenacciXX100.00724477735250606058373857504545051540
9Stefan Noesen (R)XX100.00627663695862625876363460504444048540
10Jordan WealXX100.00564168695050626274373858504545046530
11Tanner Richard (R)X100.00566559625069666074433456504444050530
12Felix Girard (R)X100.00576659605168655565323054504444047500
13Klas DahlbeckX100.00854685757370886125413978505656048650
14Chris WidemanX100.00694281746666856925414373505151051620
15Scott Harrington (R)X100.00724588737262666825393771506060051610
16Dylan Blujus (R)X100.00837395706979785125303262505555049600
17Jakub NakladalX100.00744567676165656925384069504646048580
18Oliver Kylington (R)X100.00596767735758635625323559505555051540
Rayé
1Brian Hart (R)XX100.00607562635648575259253155504444046490
2Mark MacMillan (R)XX100.00566459635053605564313252504444046490
3Danny BiegaX100.00577464715965685825293257504646046530
4Joey LaLeggia (R)X100.00556461725561656625343254504444046530
5Matt Finn (R)X100.00567162645861656625323357504646046530
6Patrick McNally (R)X100.00596967615757635325242758504646046500
MOYENNE D'ÉQUIPE100.0066597069586267614936376150484804956
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jason Kasdorf (R)100.0066686575667965727366485555051660
2Richard Bachman99.0067726470687469716966535959048660
Rayé
1Rasmus Tirronen100.0058707265666864626061495555046610
MOYENNE D'ÉQUIPE99.676470677067746668676450565604864
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Kurt Kleinendorst54616365605860USA555100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'Équipe# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Chris WidemanSenatorsSenators (OTT)D467131020419111131.58%625.:.2401100013000.00%064012.5600
2Robby FabbriSenatorsSenators (OTT)C/LW/RW4641035551451342.86%221.:.24202000140048.00%25254012.3400
3Jakub NakladalSenatorsSenators (OTT)D45499002123641.67%420.:.200000008100.00%026012.2100
4Scott HarringtonSenatorsSenators (OTT)D4178900815766.67%620.:.240000008000.00%027001.9600
5Klas DahlbeckSenatorsSenators (OTT)D434710001683637.50%1425.:.2600000014000.00%015011.3800
6Miikka SalomakiSenatorsSenators (OTT)LW/RW432560051331023.08%215.:.0100000051050.00%2140001.6600
7Michael McCarronSenatorsSenators (OTT)C/RW432555630684937.50%011.:.2900000000062.50%2461012.1800
8Viktor TikhonovSenatorsSenators (OTT)C/LW/RW4235400660333.33%217.:.1901100000041.03%7803001.4400
9Sergei PlotnikovSenatorsSenators (OTT)LW/RW403346088130.00%117.:.2601100000025.00%462000.8600
10Daniel CatenacciSenatorsSenators (OTT)C/LW403340090350.00%011.:.5200000030057.89%1960001.2600
11Zack MitchellSenatorsSenators (OTT)RW42134205222100.00%310.:.2600000000050.00%223001.4400
12Tom KuhnhacklSenatorsSenators (OTT)LW/RW4123620411479.09%116.:.480000001500100.00%1103000.8900
13Tanner RichardSenatorsSenators (OTT)C40228391552110.00%015.:.4700000000041.67%4801000.6300
14Oliver KylingtonSenatorsSenators (OTT)D401132042300.00%414.:.370000000000.00%022000.3400
15Dylan BlujusSenatorsSenators (OTT)D40113101065430.00%213.:.450000000000.00%016000.3600
16Stefan NoesenSenatorsSenators (OTT)LW/RW401145511010.00%010.:.130000000000.00%140000.4900
17Jordan WealSenatorsSenators (OTT)C/RW1000-30010100.00%212.:.4100000010066.67%311000.0000
Stats d'équipe Total ou en Moyenne65324779891296595110126558625.40%49108316.672359280001862046.38%2078848051.4600445222
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Richard BachmanSenatorsSenators (OTT)422092.6%2.4719400810865200.0%040010
2Jason KasdorfSenatorsSenators (OTT)100087.5%4.00450032415100.0%004000
Stats d'équipe Total ou en Moyenne52200.9172.76239001113280300.000044010


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur POS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Brian HartLW/RW2225.11.1993Yes203 Lbs6 ft2NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Chris WidemanD2607.01.1990 11:24:59No180 Lbs5 ft10NoNo1Pro & Farm1,300,000$0$Lien
Daniel CatenacciC/LW2309.03.1993No192 Lbs5 ft9NoNo2Pro & Farm900,000$0$900,000$Lien
Danny BiegaD2529.09.1991 15:13:00No205 Lbs6 ft0NoNo1Pro & Farm1,000,000$0$Lien
Dylan BlujusD2222.01.1994Yes191 Lbs6 ft3NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Felix GirardC2209.05.1994Yes185 Lbs5 ft10NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Jakub NakladalD2829.12.1987No205 Lbs6 ft2NoNo1Pro & Farm1,500,000$0$Lien
Jason KasdorfG2408.05.1992 17:28:26Yes178 Lbs6 ft3NoNo9Pro & Farm100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Joey LaLeggiaD2424.06.1992 15:05:47Yes183 Lbs5 ft9NoNo9Pro & Farm100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Jordan WealC/RW2415.04.1992 14:38:36No179 Lbs5 ft10NoNo1Pro & Farm1,000,000$0$Lien
Klas DahlbeckD2506.07.1991 11:27:27No207 Lbs6 ft3NoNo1Pro & Farm1,200,000$0$Lien
Mark MacMillanC/RW2423.01.1992Yes172 Lbs6 ft0NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Matt FinnD2224.02.1994Yes199 Lbs6 ft0NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Michael McCarronC/RW2107.03.1995 15:07:56Yes237 Lbs6 ft5NoNo3Pro & Farm1,200,000$0$1,200,000$1,200,000$Lien
Miikka SalomakiLW/RW2309.03.1993 15:09:23Yes198 Lbs5 ft11NoNo2Farm Only900,000$0$900,000$Lien
Oliver KylingtonD1919.05.1997 15:04:29Yes181 Lbs6 ft0NoNo9Pro & Farm100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Patrick McNallyD2404.12.1991Yes181 Lbs6 ft2NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Rasmus TirronenG2509.11.1990 0:01:39No200 Lbs6 ft3NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Richard BachmanG2925.07.1987No183 Lbs5 ft10NoNo2Pro & Farm900,000$0$900,000$Lien
Robby FabbriC/LW/RW2022.01.1996 16:54:46Yes170 Lbs5 ft10NoNo3Pro & Farm1,600,000$0$1,600,000$1,600,000$Lien
Scott HarringtonD2301.01.1993 15:15:41Yes201 Lbs6 ft2NoNo1Pro & Farm1,000,000$0$Lien
Sergei PlotnikovLW/RW2603.06.1990 3:23:02No205 Lbs6 ft2NoNo1Pro & Farm1,000,000$0$Lien
Stefan NoesenLW/RW2312.02.1993Yes205 Lbs6 ft2NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Tanner RichardC2306.04.1993 11:30:09Yes176 Lbs6 ft0NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Tom KuhnhacklLW/RW2421.02.1992 11:31:02No196 Lbs6 ft2NoNo1Pro & Farm1,200,000$0$Lien
Viktor TikhonovC/LW/RW2812.05.1988 4:06:53No189 Lbs6 ft2NoNo1Pro & Farm1,100,000$0$Lien
Zack MitchellRW2307.01.1993Yes185 Lbs6 ft0NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2723.78192 Lbs6 ft15.1481481481481633,333$



Attaque à 5 contre 5
Ligne #CentreAilier GaucheAilier Droit% TempsPHYDFOF
1Viktor TikhonovRobby FabbriSergei Plotnikov40005
2Tanner RichardMiikka SalomakiTom Kuhnhackl30122
3Tanner RichardJordan WealMichael McCarron20131
4Daniel CatenacciStefan NoesenZack Mitchell10230
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Klas DahlbeckChris Wideman43122
2Scott HarringtonJakub Nakladal34122
3Dylan BlujusOliver Kylington23230
4Klas DahlbeckChris Wideman0122
Attaque en Avantage Numérique
Ligne #CentreAilier GaucheAilier Droit% TempsPHYDFOF
1Viktor TikhonovSergei PlotnikovRobby Fabbri60005
2Tanner RichardMiikka SalomakiTom Kuhnhackl40113
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Klas DahlbeckChris Wideman60014
2Scott HarringtonJakub Nakladal40032
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Robby FabbriTom Kuhnhackl60122
2Daniel CatenacciMiikka Salomaki40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Klas DahlbeckChris Wideman60122
2Scott HarringtonJakub Nakladal40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Robby Fabbri60122Klas DahlbeckChris Wideman60122
2Michael McCarron40122Scott HarringtonJakub Nakladal40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Robby FabbriTom Kuhnhackl60113
2Viktor TikhonovMiikka Salomaki40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Klas DahlbeckChris Wideman60122
2Scott HarringtonDylan Blujus40122
Attaque Dernière Minute
CentreAilier GaucheAilier DroitDéfenseDéfense
Viktor TikhonovRobby FabbriTom KuhnhacklKlas DahlbeckChris Wideman
Défense Dernière Minute
CentreAilier GaucheAilier DroitDéfenseDéfense
Robby FabbriMiikka SalomakiTom KuhnhacklKlas DahlbeckChris Wideman
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Tanner Richard, Michael McCarron, Jordan WealTanner Richard, Michael McCarronJordan Weal
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Jakub Nakladal, Oliver Kylington, Scott HarringtonJakub NakladalOliver Kylington, Scott Harrington
Tirs de Pénalité
Robby Fabbri, Miikka Salomaki, Tom Kuhnhackl, Viktor Tikhonov, Sergei Plotnikov
Gardien
#1 : Richard Bachman, #2 : Jason Kasdorf


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1SenatorsCrunch1010000027-500.00023500121380385231460292028192150.00%4175.00%0275846.55%357844.87%387749.35%825192356531
2SenatorsBears1010000012-100.000123001213802252314604292924100.00%20100.00%0275846.55%357844.87%387749.35%825192356531
3SenatorsMarlies1100000061521.00061117001213803452314603271627000.00%3166.67%0275846.55%357844.87%387749.35%825192356531
4SenatorsHeat110000002412321.000243458001213803552314602913582611100.00%40100.00%0275846.55%357844.87%387749.35%825192356531
Vs Division1100000061521.00061117001213803452314603271627000.00%3166.67%0275846.55%357844.87%387749.35%825192356531
Vs Conference31200000910-120.33391625001213809452314601033673703133.33%9277.78%0275846.55%357844.87%387749.35%825192356531
Since Last GM Reset4220000033112240.50033508300121380129523146013249131964250.00%13284.62%0275846.55%357844.87%387749.35%825192356531
Total4220000033112240.50033508300121380129523146013249131964250.00%13284.62%0275846.55%357844.87%387749.35%825192356531

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
44L2335083129132491319600
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
42200003311
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2200000302
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
202000039
Derniers 10 Matchs
WLOTWOTL SOWSOL
220000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
4250.00%13284.62%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
5231460121380
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
275846.55%357844.87%387749.35%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
825192356531


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
Mon, Apr 21Senators@SenatorsHeat1,Senators24RECAP
Tue, Apr 22Senators@SenatorsMarlies1,Senators6RECAP
Fri, Apr 25Senators@SenatorsSenators1,Bears2RECAP
Sat, Apr 26Senators@SenatorsSenators2,Crunch7RECAP



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,710,000$ 680,000$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jour
0$ 0$ 0$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT