Americans

DG: Lukas Velecky Morale : 52 Moyenne d'Équipe : 56
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mason RaymondXX100.00574187876275686861394358537377050620
2Kevin PorterXXX100.00774578735356736560403870506464050600
3Chris ConnerX100.00596269705066686278444163516162050580
4Ben StreetX100.00726775705257676579434363604646053580
5Greg CareyXX100.00817177755463676275334264594444043580
6Barclay GoodrowXX100.00609958765954656164423963505353058570
7Shane PrinceXX100.00614168745355746660444261505151053570
8Andrew MillerXX100.00626570695167646271424162574444050560
9Matt LoritoXX100.00626470665057616071413758504444050540
10Evan Rodrigues (R)XXX100.00616470685056615767333359504444053520
11Danick Martel (R)XX100.00545759674955605959323953564444053510
12Michael Bunting (R)X100.00576759635154605767323556504444053500
13Davis DrewiskeX100.00928199647981835025263063505959060610
14Esa Lindell (R)X100.00697472796959575225393666506057058580
15Chad RuhwedelX100.00716669695669706725333260505555053570
16Brent RegnerX100.00646762675669706425373770504646050570
17Brady Austin (R)X100.00618566586468705425262760504848054520
Rayé
1Michael SgarbossaX100.00586860715255606072363458575354046540
2Kurtis Gabriel (R)X100.00588058695966655465273253504444046510
3Brad StuartX71.79764788767673745725393873509899039660
4Alexandre GrenierX100.00737872687483815525393462504848046600
5Linus Arnesson (R)X100.00596967705759645325252658504646046510
6Oleg YevenkoX100.00558755636560645325242752504444046500
7Tyler Lewington (R)X100.00546954605757635425253150504444046480
MOYENNE D'ÉQUIPE98.7965676970586367595035366152525305056
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Nathan Lieuwen100.0066716874697265706865485555053650
2Mackenzie Skapski (R)98.0060696864696966636363525857053630
Rayé
MOYENNE D'ÉQUIPE99.006370686969716667666450575605364
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Dan Lambert74596170606178CAN465100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'Équipe# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Ben StreetAmericansAmericans (BUF)C4325-120515111720.00%018.:.1911200000068.66%67114001.3600
2Shane PrinceAmericansAmericans (BUF)C/LW413430031061010.00%116.:.1100000050033.33%3120001.2400
3Greg CareyAmericansAmericans (BUF)C/LW431430091121027.27%113.:.4400000002064.29%2841001.4500
4Mason RaymondAmericansAmericans (BUF)LW/RW431440082951010.34%323.:.3400000090080.00%20284000.8500
5Chris ConnerAmericansAmericans (BUF)LW4033-1401134150.00%118.:.310220001000.00%0112000.8100
6Kevin PorterAmericansAmericans (BUF)C/LW/RW4033440654120.00%319.:.0300000080052.24%67104000.7900
7Barclay GoodrowAmericansAmericans (BUF)LW/RW411214925311699.09%013.:.3500000001040.00%570000.7400
8Andrew MillerAmericansAmericans (BUF)C/RW4112400674114.29%416.:.4200000000033.33%372000.6000
9Davis DrewiskeAmericansAmericans (BUF)D40222151587350.00%525.:.3801100011000.00%003000.3900
10Chad RuhwedelAmericansAmericans (BUF)D41122001030433.33%219.:.061010002000.00%003000.5200
11Matt LoritoAmericansAmericans (BUF)LW/RW4011300123210.00%114.:.210000000000.00%042000.3500
12Brent RegnerAmericansAmericans (BUF)D401122022550.00%118.:.040000000000.00%027000.2800
13Esa LindellAmericansAmericans (BUF)D400011515812300.00%320.:.040000003000.00%025000.0000
14Brad StuartAmericansAmericans (BUF)D3000-10026840.00%717.:.190000007000.00%0110000.0000
15Brady AustinAmericansAmericans (BUF)D40002271522110.00%215.:.050000001000.00%024000.0000
16Danick MartelAmericansAmericans (BUF)C/LW4000-20001010.00%208.:.3700000020033.33%303000.0000
17Evan RodriguesAmericansAmericans (BUF)C/LW/RW400000031000.00%207.:.0600000000040.00%1001000.0000
18Michael BuntingAmericansAmericans (BUF)LW400000013110.00%107.:.060000000000.00%013000.0000
Stats d'équipe Total ou en Moyenne7113203326118708986141651069.22%39115116.2224615790000543060.19%20610258000.5700617214
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Nathan LieuwenAmericansAmericans (BUF)321093.8%1.681790058149000.0%031110
2Mackenzie SkapskiAmericansAmericans (BUF)110095.3%2.00600024323000.0%013000
Stats d'équipe Total ou en Moyenne43100.9441.7623900712472000.000044110


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur POS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Alexandre GrenierD2505.09.1991 9:40:19No200 Lbs6 ft5NoNo1Pro & Farm1,100,000$0$Lien
Andrew MillerC/RW2818.09.1988No181 Lbs5 ft10NoNo2Pro & Farm500,000$0$500,000$Lien
Barclay GoodrowLW/RW2326.02.1993 1:51:57No215 Lbs6 ft2NoNo1Pro & Farm1,200,000$0$Lien
Ben StreetC2913.02.1987No185 Lbs5 ft11NoNo1Pro & Farm500,000$0$Lien
Brad Stuart (Sur la Masse Salariale)D3606.11.1979No215 Lbs6 ft2NoNo2Pro & Farm1,700,000$0$1,700,000$Lien
Brady AustinD2316.06.1993Yes234 Lbs6 ft3NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Brent RegnerD2717.05.1989No189 Lbs5 ft11NoNo1Pro & Farm1,000,000$0$Lien
Chad RuhwedelD2607.05.1990 9:51:06No181 Lbs5 ft11NoNo3Pro & Farm1,100,000$0$1,100,000$1,100,000$Lien
Chris ConnerLW3223.12.1983No181 Lbs5 ft7NoNo2Pro & Farm500,000$0$500,000$Lien
Danick MartelC/LW2112.12.1994Yes161 Lbs5 ft8NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Davis DrewiskeD3122.11.1984No222 Lbs6 ft2NoNo1Pro & Farm400,000$0$Lien
Esa LindellD2223.05.1994 23:57:58Yes198 Lbs6 ft3NoNo2Pro & Farm1,300,000$0$1,300,000$Lien
Evan RodriguesC/LW/RW2328.07.1993Yes179 Lbs5 ft11NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Greg CareyC/LW2605.04.1990No195 Lbs6 ft0NoNo1Pro & Farm400,000$0$Lien
Kevin PorterC/LW/RW3012.03.1986No194 Lbs5 ft11NoNo2Pro & Farm1,100,000$0$1,100,000$Lien
Kurtis GabrielRW2320.04.1993Yes214 Lbs6 ft4NoNo2Farm Only1,000,000$0$1,000,000$Lien
Linus ArnessonD2221.09.1994Yes188 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Mackenzie SkapskiG2215.06.1994 1:49:50Yes191 Lbs6 ft3NoNo2Pro & Farm1,000,000$0$1,000,000$Lien
Mason RaymondLW/RW3117.09.1985No185 Lbs6 ft0NoNo2Pro & Farm1,700,000$0$1,700,000$Lien
Matt LoritoLW/RW2603.07.1990No181 Lbs5 ft9NoNo1Pro & Farm1,000,000$0$Lien
Michael BuntingLW2117.09.1995Yes187 Lbs5 ft11NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Michael SgarbossaC2425.07.1992 9:37:53No180 Lbs5 ft11NoNo3Pro & Farm800,000$0$800,000$800,000$Lien
Nathan LieuwenG2508.08.1991 15:25:07No186 Lbs6 ft5NoNo2Pro & Farm1,000,000$0$1,000,000$Lien
Oleg YevenkoD2521.01.1991No229 Lbs6 ft7NoNo1Pro & Farm1,300,000$0$Lien
Shane PrinceC/LW2316.12.1992 9:36:42No190 Lbs5 ft11NoNo2Pro & Farm1,300,000$0$1,300,000$Lien
Tyler LewingtonD2105.12.1994Yes189 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2625.58194 Lbs6 ft13.6153846153846788,462$



Attaque à 5 contre 5
Ligne #CentreAilier GaucheAilier Droit% TempsPHYDFOF
1Kevin PorterMason RaymondAndrew Miller40122
2Ben StreetChris ConnerBarclay Goodrow30122
3Greg CareyShane PrinceMatt Lorito20122
4Evan RodriguesMichael BuntingMason Raymond10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
1Davis Drewiske40122
2Esa LindellChad Ruhwedel30122
3Brent RegnerBrady Austin20122
4Davis Drewiske10122
Attaque en Avantage Numérique
Ligne #CentreAilier GaucheAilier Droit% TempsPHYDFOF
1Kevin PorterMason RaymondAndrew Miller60122
2Ben StreetChris ConnerBarclay Goodrow40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Davis Drewiske60122
2Esa LindellChad Ruhwedel40122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
1Mason RaymondKevin Porter60122
2Ben StreetChris Conner40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
1Davis Drewiske60122
2Esa LindellChad Ruhwedel40122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
1Mason Raymond60122Davis Drewiske60122
2Kevin Porter40122Esa LindellChad Ruhwedel40122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
1Mason RaymondKevin Porter60122
2Ben StreetChris Conner40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
1Davis Drewiske60122
2Esa LindellChad Ruhwedel40122
Attaque Dernière Minute
CentreAilier GaucheAilier DroitDéfenseDéfense
Kevin PorterMason RaymondAndrew MillerDavis Drewiske
Défense Dernière Minute
CentreAilier GaucheAilier DroitDéfenseDéfense
Kevin PorterMason RaymondAndrew MillerDavis Drewiske
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Danick Martel, Greg Carey, Shane PrinceDanick Martel, Greg CareyShane Prince
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Brent Regner, Brady Austin, Esa LindellBrent RegnerBrady Austin, Esa Lindell
Tirs de Pénalité
Mason Raymond, Kevin Porter, Ben Street, Chris Conner, Greg Carey
Gardien
#1 : Mackenzie Skapski, #2 : Nathan Lieuwen


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1AmericansWolf Pack1100000062421.00061016007330336630450431467162150.00%110.00%0468156.79%477761.04%314864.58%1067271286132
2AmericansBulldogs1100000021121.0002240073303566304503011820000.00%40100.00%0468156.79%477761.04%314864.58%1067271286132
3AmericansMonsters1100000031221.0003580073303666304502793432400.00%20100.00%0468156.79%477761.04%314864.58%1067271286132
4AmericansSharks1010000023-100.0002350073303766304502459213133.33%2150.00%0468156.79%477761.04%314864.58%1067271286132
Vs Division1100000021121.0002240073303566304503011820000.00%40100.00%0468156.79%477761.04%314864.58%1067271286132
Vs Conference2200000083541.00081220007330686630450732575362150.00%5180.00%0468156.79%477761.04%314864.58%1067271286132
Since Last GM Reset43100000137660.750132033007330141663045012439118899222.22%9277.78%0468156.79%477761.04%314864.58%1067271286132
Total43100000137660.750132033007330141663045012439118899222.22%9277.78%0468156.79%477761.04%314864.58%1067271286132

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
46W2132033141124391188900
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4310000137
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
220000093
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
211000044
Derniers 10 Matchs
WLOTWOTL SOWSOL
310000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
9222.22%9277.78%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
66304507330
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
468156.79%477761.04%314864.58%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
1067271286132


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
Sun, Nov 24Americans@AmericansAmericans2,Bulldogs1RECAP
Mon, Nov 25Americans@AmericansAmericans2,Sharks3RECAP
Thu, Nov 28Americans@AmericansMonsters1,Americans3RECAP
Fri, Nov 29Americans@AmericansWolf Pack2,Americans6RECAP



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
1,880,000$ 1,190,000$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jour
0$ 0$ 0$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT