Marlies

DG: Daniel Stankovic Morale : 46 Moyenne d'Équipe : 53
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mark McNeill (R)XX100.00907878665967686480364165584444048590
2Brayden Irwin (R)X100.00768472545968585661343662655460049550
3Chase BalisyXXX100.00606369665069655765323359504444047520
4Kenny RyanX100.00737375615664635465283355504444047520
5Cole Ully (R)XX100.00646671645150605667323460504444047510
6Ben Johnson (R)X100.00676872625248565864303955564444047510
7Blake ColemanX100.00586960595348575867323857514444047500
8Greger HansonX100.00576659585150595359273152504444047480
9Shane BakkerX100.00547856635947565264253148504444047480
10Joel RechliczX100.00568356555949595265272750504444048470
11Ryan CruthersX100.00453861546255414533323148406156044460
12Mike LiambasX100.00527055625350595259262845504444047460
13Darren Dietz (R)X100.00799472657269876925434070504945040630
14Anthony DeAngelo (R)X100.00556461735561666725393154505555037550
15Calle Andersson (R)X100.00627969706358635625253363504944051530
16Jan Kostalek (R)X100.00596867665759645525262758504646047510
17Justin Holl (R)XX100.00646670635153605657323159504444047510
18Robert Hagg (R)X100.00587565666068695325242856504545047510
Rayé
MOYENNE D'ÉQUIPE100.0063716663575762565231335651474604652
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mason McDonald (R)99.0059677276636962676762455050047630
2Pat Nagle (R)100.0046505974514846485045465153044500
Rayé
1Jeff Lerg100.0062636366697568696868565555048650
MOYENNE D'ÉQUIPE99.675660657261645961625849525304659
Nom du Coach PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Sheldon Keefe76778471606599CAN355100,000$


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Joueur Nom de l'Équipe# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Darren DietzMarliesMarlies (TOR)D4134-657351122474.55%1023.:.061010001000.00%0910000.8700
2Mark McNeillMarliesMarlies (TOR)C/RW4314-755142181214.29%621.:.2701100010061.67%60101000.9300
3Anthony DeAngeloMarliesMarlies (TOR)D4022-800414430.00%926.:.180000001000.00%027000.3800
4Chase BalisyMarliesMarlies (TOR)C/LW/RW4112-620492611.11%324.:.2400000010042.11%1974000.4100
5Blake ColemanMarliesMarlies (TOR)C4011-20057160.00%013.:.0500000000059.09%2223000.3800
6Cole UllyMarliesMarlies (TOR)LW/RW4011-300953110.00%122.:.0600000010050.00%4102000.2300
7Jan KostalekMarliesMarlies (TOR)D401100023100.00%720.:.030000000000.00%004000.2500
8Justin HollMarliesMarlies (TOR)RW/D4101-500862316.67%221.:.230000001000.00%134000.2300
9Kenny RyanMarliesMarlies (TOR)RW4011-80081230.00%523.:.4001100010057.14%733000.2100
10Brayden IrwinMarliesMarlies (TOR)C4101-4202011104610.00%121.:.4900000000052.27%8847000.2300
11Ryan CruthersMarliesMarlies (TOR)C400000001000.00%004.:.0600000000050.00%400000.0000
12Calle AnderssonMarliesMarlies (TOR)D4000-5221068240.00%923.:.490000000000.00%044000.0000
13Ben JohnsonMarliesMarlies (TOR)LW4000-600109150.00%217.:.010000000000.00%071000.0000
14Mike LiambasMarliesMarlies (TOR)LW4000-10020000.00%007.:.020000000000.00%000000.0000
15Joel RechliczMarliesMarlies (TOR)RW40000101021000.00%105.:.290000000000.00%011000.0000
16Robert HaggMarliesMarlies (TOR)D4000-90033200.00%222.:.300000000000.00%002000.0000
17Greger HansonMarliesMarlies (TOR)LW400000000000.00%000.:.540000000000.00%000000.0000
18Shane BakkerMarliesMarlies (TOR)C400000000000.00%000.:.370000000000.00%101000.0000
Stats d'équipe Total ou en Moyenne7271118-70116809911112036665.83%58119516.61123181130000120054.37%2066254000.3000448010
Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du Gardien Nom de l'ÉquipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mason McDonaldMarliesMarlies (TOR)403085.5%5.43188001711763000.0%031010
2Pat NagleMarliesMarlies (TOR)101082.6%4.80500042313000.0%013000
Stats d'équipe Total ou en Moyenne50400.8505.27239002114076000.000044010


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du Joueur POS Âge Date de Naissance Nouveau Joueur Poids Taille Non-Échange Ballotage Forcé Contrat Type Salaire Actuel Salaire RestantSalaire Année 2 Salaire Année 3 Salaire Année 4 Salaire Année 5 Salaire Année 6 Salaire Année 7 Salaire Année 8 Salaire Année 9 Salaire Année 10 Link
Anthony DeAngeloD2024.10.1995Yes175 Lbs5 ft11NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Ben JohnsonLW2207.06.1994Yes187 Lbs6 ft0NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Blake ColemanC2428.11.1991 15:45:20No198 Lbs5 ft10NoNo9Pro & Farm100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Brayden IrwinC2824.03.1988 7:45:01Yes215 Lbs6 ft5NoNo5Farm Only100,000$0$100,000$100,000$100,000$100,000$
Calle AnderssonD2216.05.1994Yes216 Lbs6 ft2NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Chase BalisyC/LW/RW2402.02.1992No170 Lbs5 ft11NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Cole UllyLW/RW2120.02.1995 15:46:38Yes181 Lbs5 ft11NoNo9Pro & Farm100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Darren DietzD2317.07.1993Yes204 Lbs6 ft1NoNo2Pro & Farm1,000,000$0$1,000,000$Lien
Greger HansonLW2817.02.1988No185 Lbs5 ft10NoNo1Pro & Farm1,100,000$0$Lien
Jan KostalekD2116.02.1995Yes181 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Jeff LergG3009.04.1986No163 Lbs5 ft6NoNo1Pro & Farm500,000$0$Lien
Joel RechliczRW2914.06.1987No220 Lbs6 ft4NoNo1Pro & Farm1,100,000$0$Lien
Justin HollRW/D2430.01.1992Yes170 Lbs6 ft2NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Kenny RyanRW2510.07.1991 3:30:31No204 Lbs6 ft0NoNo6Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$Lien
Mark McNeillC/RW2322.02.1993 3:35:38Yes214 Lbs6 ft2NoNo6Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$Lien
Mason McDonaldG2023.04.1996 1:19:01Yes201 Lbs6 ft4NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$
Mike LiambasLW2716.02.1989No204 Lbs5 ft9NoNo1Pro & Farm1,100,000$0$Lien
Pat NagleG2921.09.1987Yes169 Lbs6 ft2NoNo1Pro & Farm1,100,000$0$
Robert HaggD2108.02.1995Yes204 Lbs6 ft2NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Lien
Ryan CruthersC3204.07.1984No175 Lbs6 ft0NoNo1Pro & Farm1,100,000$0$
Shane BakkerC2811.11.1987No209 Lbs6 ft4NoNo1Pro & Farm1,100,000$0$Lien
Joueurs TotalÂge MoyenPoids MoyenTaille MoyenneContrat MoyenSalaire Moyen 1e Année
2124.81193 Lbs6 ft15.7619047619048447,619$



Attaque à 5 contre 5
Ligne #CentreAilier GaucheAilier Droit% TempsPHYDFOF
1Brayden Irwin40122
2Mark McNeillKenny Ryan30122
3Chase BalisyKenny Ryan20122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% TempsPHYDFOF
140122
230122
320122
410122
Attaque en Avantage Numérique
Ligne #CentreAilier GaucheAilier Droit% TempsPHYDFOF
1Brayden Irwin60122
2Mark McNeillKenny Ryan40122
Défense en Avantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque à 4 en Désavantage Numérique
Ligne #CentreAilier% TempsPHYDFOF
160122
2Brayden IrwinMark McNeill40122
Défense à 4 en Désavantage Numérique
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
3 joueurs en Désavantage Numérique
Ligne #Ailier% TempsPHYDFOFDéfenseDéfense% TempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% TempsPHYDFOF
160122
2Brayden IrwinMark McNeill40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% TempsPHYDFOF
160122
240122
Attaque Dernière Minute
CentreAilier GaucheAilier DroitDéfenseDéfense
Brayden Irwin
Défense Dernière Minute
CentreAilier GaucheAilier DroitDéfenseDéfense
Brayden Irwin
Attaquants Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
Kenny Ryan, Chase Balisy, Kenny Ryan, Chase Balisy
Défenseurs Supplémentaires
Normal Avantage NumériqueDésavantage Numérique
, , ,
Tirs de Pénalité
, , Brayden Irwin, Mark McNeill,
Gardien
#1 : , #2 :


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1MarliesSenators1010000016-500.000123001600324637370341210253133.33%000.00%0377052.86%467561.33%296147.54%734096356935
2MarliesWolves1010000035-200.00035800160028463737040202224200.00%10100.00%0377052.86%467561.33%296147.54%734096356935
3MarliesIceHogs1010000028-600.00023500160027463737028114526100.00%000.00%0377052.86%467561.33%296147.54%734096356935
4MarliesMonarchs1010000012-100.00011200160033463737038153924700.00%2150.00%0377052.86%467561.33%296147.54%734096356935
Vs Division1010000016-500.000123001600324637370341210253133.33%000.00%0377052.86%467561.33%296147.54%734096356935
Vs Conference1010000016-500.000123001600324637370341210253133.33%000.00%0377052.86%467561.33%296147.54%734096356935
Since Last GM Reset40400000721-1400.00071118001600120463737014058116991317.69%3166.67%0377052.86%467561.33%296147.54%734096356935
Total40400000721-1400.00071118001600120463737014058116991317.69%3166.67%0377052.86%467561.33%296147.54%734096356935

Total Pour les Joueurs
Matchs JouésPointsSéquenceButsPassesPointsTirs PourTirs ContreTirs BloquésMinutes de PénalitéMises en ÉchecButs en Filet DésertBlanchissage
40L471118120140581169900
Tous les Matchs
GPWLOTWOTL SOWSOLGFGA
4040000721
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
2020000513
Matchs Éxtérieurs
GPWLOTWOTL SOWSOLGFGA
202000028
Derniers 10 Matchs
WLOTWOTL SOWSOL
040000
Tentatives en Avantage NumériqueButs en Avantage Numérique% en Avantage NumériqueTentatives en Désavantage NumériqueButs Contre en Désavantage Numérique% en Désavantage NumériqueButs Pour en Désavantage Numérique
1317.69%3166.67%0
Tirs en 1e PériodeTirs en 2e PériodeTirs en 3e PériodeTirs en 4e PériodeButs en 1e PériodeButs en 2e PériodeButs en 3e PériodeButs en 4e Période
46373701600
Mises en Jeu
Gagnées en Zone OffensiveTotal en Zone Offensive% Gagnées en Zone Offensive Gagnées en Zone DéfensiveTotal en Zone Défensive% Gagnées en Zone DéfensiveGagnées en Zone NeutreTotal en Zone Neutre% Gagnées en Zone Neutre
377052.86%467561.33%296147.54%
Temps Avec la Rondelle
En Zone OffensiveContrôle en Zone OffensiveEn Zone DéfensiveContrôle en Zone DéfensiveEn Zone NeutreContrôle en Zone Neutre
734096356935


Astuces sur les Filtres (Anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Date Limite d'Échange --- Les échange ne peuvent plus se faire après la simulation de cette journée!
Mon, Apr 21Marlies@MarliesMarlies1,Monarchs2RECAP
Tue, Apr 22Marlies@MarliesMarlies1,Senators6RECAP
Fri, Apr 25Marlies@MarliesWolves5,Marlies3RECAP
Sat, Apr 26Marlies@MarliesIceHogs8,Marlies2RECAP



Capacité de l'Aréna - Tendance du Prix des Billets - %
Niveau 1Niveau 2
Capacité de l'Aréna20001000
Prix des Billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenus
Matchs à domicile RestantsAssistance Moyenne - %Revenus Moyen par MatchRevenus Annuels à ce JourCapacité de l'ArénaPopularité de l'Équipe
0 0 - 0.00% 0$0$3000100

Dépenses
Salaire Total des JoueursSalaire Total Moyen des JoueursSalaire des Coachs
940,000$ 230,000$ 0$
Dépenses Annuelles à Ce JourCap Salarial Par JourCap salarial à ce jour
0$ 0$ 0$

Éstimation
Revenus de la Saison ÉstimésJours Restants de la SaisonDépenses Par JourDépenses de la Saison Éstimées
0$ 0 0$ 0$




LigueDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT