Monsters

GM : Stanislav Trybula Morale : 52 Team Overall : 55
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Paul CareyXXX100.00827078785466686484383962564647053590
2Josh Leivo (R) (A)XX100.00584266705057646360374857504646050540
3Brody SutterX100.00657863675966645668313560504545056540
4Mike HalmoXX100.00557257645565626071323956564545053530
5Turner ElsonXX100.00586860595266635869333656504444053520
6Michael SchumacherX100.00647863615966655465273357504444047520
7Andrew CrescenziX100.00607563645765635669323158504444048520
8Ryan Haggerty (R)X100.00747375585664635564283655504444053520
9Riley BraceXX100.00676772625247555668353160504444053510
10Phil LaneX100.00607562635763625364273256504444053510
11Garrett MitchellX100.00586860615266635768323456504444053510
12Mark Barberio (C)X100.00644288766969737225444071506960053630
13T.J. Brennan (A)X100.00737872677480776925454166575555053630
14Chris ButlerX100.00567263755964676325353057506869056560
15Gus YoungX100.00567263665968705725292956504545053520
16Kirill Gotovets (R)X100.00556461655560655725302752504444053500
17Jesper Pettersson (R)X100.00556561635661665325242851504444048490
Scratches
1Matthew FordX100.00607563625769666277364258594444047550
2Darren KramerX100.00577758625866655465283353504444046510
3Ryan Olsen (R)X100.00586960615366645464293154504444046500
4Conor AllenX100.00597766706269705725292758504646041540
5Joel ChouinardX86.43606967625755576425343161504848041520
TEAM AVERAGE99.3662696665576465595333345851474705053
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Philipp Grubauer100.0075786884797374787670556964050720
2Sam Brittain (R)97.0064718272657064676363475555050640
Scratches
1Trevor Cann100.0055576466676260626261594761046610
2Kent Patterson100.0057505776706257575762665149046590
TEAM AVERAGE99.256364687570676466656457565704864
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Joe Sacco59504150454546USA475100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Mark BarberioMonstersMonsters (COL)D476131400319121436.84%626.:.4200020214000.00%0117012.4300
2Paul CareyMonstersMonsters (COL)C/LW/RW4281010007162812.50%823.:.37000022120060.00%110112002.1200
3T.J. BrennanMonstersMonsters (COL)D436911171512142721.43%924.:.1600002213010.00%037001.8500
4Josh LeivoMonstersMonsters (COL)LW/RW44156003127733.33%118.:.4700010153037.50%8204001.3300
5Chris ButlerMonstersMonsters (COL)D4022-37525450.00%420.:.020000005000.00%031000.5000
6Mike HalmoMonstersMonsters (COL)LW/RW40220004105110.00%118.:.1300000000050.00%2151000.5500
7Gus YoungMonstersMonsters (COL)D402202053110.00%219.:.230000001000.00%003000.5200
8Brody SutterMonstersMonsters (COL)C411213925711329.09%216.:.1200000030051.16%4363000.6200
9Turner ElsonMonstersMonsters (COL)C/LW4011-10087440.00%112.:.2300000030055.00%2091000.4000
10Kirill GotovetsMonstersMonsters (COL)D401124021020.00%616.:.050000002000.00%004000.3100
11Matthew FordMonstersMonsters (COL)RW410154535221550.00%317.:.390000001401100.00%123000.2800
12Andrew CrescenziMonstersMonsters (COL)C40111171589450.00%014.:.1400000000070.00%3011000.3500
13Garrett MitchellMonstersMonsters (COL)RW4101520342225.00%108.:.220000001000.00%230000.6000
14Riley BraceMonstersMonsters (COL)LW/RW400040095520.00%112.:.4300000000050.00%433000.0000
15Michael SchumacherMonstersMonsters (COL)LW40000423040010.00%005.:.070000000000.00%000000.0000
16Joel ChouinardMonstersMonsters (COL)D100000000000.00%202.:.450000000000.00%001000.0000
17Jesper PetterssonMonstersMonsters (COL)D200012010020.00%115.:.430000001000.00%001000.0000
18Ryan HaggertyMonstersMonsters (COL)RW4000000910270.00%118.:.1300000000033.33%300000.0000
19Phil LaneMonstersMonsters (COL)RW400020011020.00%008.:.450000000000.00%702000.0000
Team Total or Average711931505817712590118129548714.73%49115716.30000151123473803255.65%2308744010.86006811223
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Philipp GrubauerMonstersMonsters (COL)220095.5%1.501200036643000.0%022100
2Sam BrittainMonstersMonsters (COL)211091.8%3.001200067350000.0%022000
Team Total or Average43100.9352.2524000913993000.000044100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name POS Age Birthday Rookie Weight Height No Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Andrew CrescenziC2429.07.1992 3:13:26No198 Lbs6 ft4NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
Brody SutterC2526.09.1991 3:19:47No203 Lbs6 ft5NoNo1Pro & Farm1,000,000$0$Link
Chris ButlerD2927.10.1986No196 Lbs6 ft1NoNo1Pro & Farm1,000,000$0$Link
Conor AllenD2601.07.1990No210 Lbs6 ft1NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Darren KramerLW2419.11.1991 4:02:12No210 Lbs6 ft1NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
Garrett MitchellRW2402.09.1992 13:46:10No183 Lbs6 ft1NoNo5Farm Only100,000$0$100,000$100,000$100,000$100,000$Link
Gus YoungD2510.07.1991No190 Lbs6 ft2NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Jesper PetterssonD2216.07.1994Yes187 Lbs5 ft9NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Joel Chouinard (Out of Payroll)D2608.04.1990No187 Lbs6 ft1NoNo5Farm Only100,000$0$100,000$100,000$100,000$100,000$Link
Josh LeivoLW/RW2326.05.1993 2:00:20Yes173 Lbs6 ft1NoNo1Pro & Farm1,100,000$0$Link
Kent PattersonG2715.09.1989 3:26:58No180 Lbs6 ft1NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$
Kirill GotovetsD2525.06.1991Yes175 Lbs5 ft11NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Mark BarberioD2623.03.1990No199 Lbs6 ft1NoNo2Pro & Farm1,700,000$0$1,700,000$Link
Matthew FordRW3209.10.1984No207 Lbs6 ft1NoNo5Farm Only100,000$0$100,000$100,000$100,000$100,000$Link
Michael SchumacherLW2325.08.1993No203 Lbs6 ft5NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Mike HalmoLW/RW2515.05.1991 14:58:15No209 Lbs5 ft10NoNo1Pro & Farm1,000,000$0$Link
Paul CareyC/LW/RW2824.09.1988 3:28:03No190 Lbs6 ft0NoNo2Pro & Farm600,000$0$600,000$Link
Phil LaneRW2429.05.1992 5:08:04No203 Lbs6 ft2NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
Philipp Grubauer (1 Way Contract)G2425.11.1991 6:32:38No184 Lbs6 ft1NoNo2Pro & Farm1,500,000$0$1,500,000$Link
Riley BraceLW/RW2407.03.1992No185 Lbs5 ft11NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Ryan HaggertyRW2304.03.1993Yes201 Lbs6 ft0NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Ryan OlsenC2225.03.1994Yes187 Lbs6 ft1NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Sam BrittainG2410.05.1992Yes229 Lbs6 ft3NoNo1Pro & Farm1,000,000$0$Link
T.J. BrennanD2703.04.1989No216 Lbs6 ft1NoNo2Pro & Farm1,400,000$0$1,400,000$Link
Trevor CannG2730.05.1989No180 Lbs5 ft11NoNo5Farm Only100,000$0$100,000$100,000$100,000$100,000$
Turner ElsonC/LW2413.09.1992No185 Lbs6 ft0NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2625.12195 Lbs6 ft15.3461538461538461,538$



5 vs 5 Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Paul CareyJosh Leivo40122
2Brody SutterMike HalmoRyan Haggerty30122
3Andrew CrescenziTurner ElsonRiley Brace20122
4Paul CareyMichael SchumacherGarrett Mitchell10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1T.J. BrennanMark Barberio40122
2Chris ButlerGus Young30122
3Kirill GotovetsJesper Pettersson20122
4T.J. BrennanMark Barberio10122
Power Play Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Paul CareyJosh Leivo60122
2Brody SutterMike HalmoRyan Haggerty40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1T.J. BrennanMark Barberio60122
2Chris ButlerGus Young40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Paul Carey60122
2Josh LeivoBrody Sutter40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1T.J. BrennanMark Barberio60122
2Chris ButlerGus Young40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Paul Carey60122T.J. BrennanMark Barberio60122
240122Chris ButlerGus Young40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Paul Carey60122
2Josh LeivoBrody Sutter40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1T.J. BrennanMark Barberio60122
2Chris ButlerGus Young40122
Last Minutes Offensive
CenterLeft WingRight WingDefenseDefense
Paul CareyJosh LeivoT.J. BrennanMark Barberio
Last Minutes Defensive
CenterLeft WingRight WingDefenseDefense
Paul CareyJosh LeivoT.J. BrennanMark Barberio
Extra Forwards
Normal PowerPlayPenalty Kill
Phil Lane, Andrew Crescenzi, Turner ElsonPhil Lane, Andrew CrescenziTurner Elson
Extra Defensemen
Normal PowerPlayPenalty Kill
Kirill Gotovets, Jesper Pettersson, Chris ButlerKirill GotovetsJesper Pettersson, Chris Butler
Penalty Shots
Paul Carey, , Josh Leivo, Brody Sutter, Ryan Haggerty
Goalie
#1 : Sam Brittain, #2 : Philipp Grubauer


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1MonstersPenguins1100000021121.00023500694033335343033112929400.00%20100.00%1488457.14%458552.94%356157.38%784694366632
2MonstersBruins11000000112921.00011193000694038335343033167615200.00%3166.67%1488457.14%458552.94%356157.38%784694366632
3MonstersAmericans1010000013-200.00011200694027335343036122823200.00%40100.00%1488457.14%458552.94%356157.38%784694366632
4MonstersPirates1100000053221.000581300694031335343037104423300.00%2150.00%0488457.14%458552.94%356157.38%784694366632
Vs Division1100000053221.000581300694031335343037104423300.00%2150.00%0488457.14%458552.94%356157.38%784694366632
Vs Conference1100000053221.000581300694031335343037104423300.00%2150.00%0488457.14%458552.94%356157.38%784694366632
Since Last GM Reset431000001991060.750193150006940129335343013949177901100.00%11281.82%3488457.14%458552.94%356157.38%784694366632
Total431000001991060.750193150006940129335343013949177901100.00%11281.82%3488457.14%458552.94%356157.38%784694366632

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
46W1193150129139491779000
All Games
GPWLOTWOTL SOWSOLGFGA
4310000199
Home Games
GPWLOTWOTL SOWSOLGFGA
2200000133
Visitor Games
GPWLOTWOTL SOWSOLGFGA
211000066
Last 10 Games
WLOTWOTL SOWSOL
310000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1100.00%11281.82%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
33534306940
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
488457.14%458552.94%356157.38%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
784694366632


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Trade Deadline --- Trades can’t be done after this day is simulated!
Tue, Apr 22Monsters@MonstersPenguins1,Monsters2RECAP
Wed, Apr 23Monsters@MonstersBruins2,Monsters11RECAP
Sat, Apr 26Monsters@MonstersMonsters1,Americans3RECAP
Sun, Apr 27Monsters@MonstersMonsters5,Pirates3RECAP



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,030,000$ 520,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT