Monarchs

GM : Daniel Sebera Morale : 50 Team Overall : 55
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kyle CliffordX100.00779965758252796460414060506972051620
2Sergey Kalinin (R)XXX100.00685566756974686961414462505456051610
3Gabriel BourqueXX100.00744565715257686657413968506465051590
4Jordan NolanXX100.00716865775951676157403960506466051580
5Bud Holloway (R)XXX100.00647371655558616179423863504444054550
6Louis-Marc AubryX100.00657864645969665775323461504444050540
7Nic DowdX100.00576659625168666175423657504444051540
8Ondrej Kase (R)XX100.00686773705249586068323955564444051530
9John McFarlandXX100.00627663695863625768313759504444052530
10Lukas Sedlak (R)X100.00597161685462625564273655504444048510
11Michael Pelech (R)X100.00607846556551515468333157565058049510
12Josh ArchibaldXX100.00566359635064625559293352504444051500
13Nikita NesterovX100.00765577816779796925424070505556051640
14Carlo ColaiacovoX100.00694486767067646625403970507174048630
15Cameron GaunceX100.00727772707389885125392760504848054600
16Vojtech MozikX100.00577365695961656125322858504646051530
17Niclas Andersen (R)X100.00617568696061665625282961504848054530
Scratches
1David WohlbergXX100.00597161615465635565303255504444046510
2Robert CzarnikX100.00493574687045405240292953504960046490
3Jeremy Gregoire (R)X100.00576859645252605359273253504444046490
4Josh ShallaX100.00463581677245405130292950514747046480
5John RamageX100.00577365645968696325333258504646046540
6Konrad AbeltshauserX80.79618566596462665825322662505555046530
7David Kolomatis (R)X100.00606967645756605625282859504747046510
TEAM AVERAGE99.1763676768616164594934345951505205055
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1John Muse98.0067746574677165696964465555051650
2Justin Peters100.0060727665666763625962586460051630
Scratches
TEAM AVERAGE99.006473717067696466646352605805164
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dallas Eakins60716667616172USA495100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Nikita NesterovMonarchsMonarchs (LAK)D476135204194936.84%827.:.1410110113000.00%0210012.3900
2Sergey KalininMonarchsMonarchs (LAK)C/LW/RW42911400585825.00%221.:.07112011161047.56%82134002.6000
3Carlo ColaiacovoMonarchsMonarchs (LAK)D42575005106820.00%1427.:.3600000015000.00%058001.2700
4John McFarlandMonarchsMonarchs (LAK)LW/RW42574556136915.38%416.:.1900000060042.86%760002.1500
5Gabriel BourqueMonarchsMonarchs (LAK)LW/RW443740011126233.33%417.:.4601100050033.33%955011.9700
6Kyle CliffordMonarchsMonarchs (LAK)LW415676135696711.11%120.:.13000011101040.91%2222001.4800
7Bud HollowayMonarchsMonarchs (LAK)C/LW/RW4123-31515471414.29%315.:.4400000010034.00%5033000.9500
8Jordan NolanMonarchsMonarchs (LAK)LW/RW4213-3207193810.53%118.:.220000004000.00%2240000.8200
9Lukas SedlakMonarchsMonarchs (LAK)C4112455220250.00%110.:.0500000030046.67%1532000.9900
10Cameron GaunceMonarchsMonarchs (LAK)D40220303045250.00%1218.:.210000008000.00%011000.5400
11Louis-Marc AubryMonarchsMonarchs (LAK)C4101-28135350320.00%011.:.0200000010037.50%2462000.4500
12Konrad AbeltshauserMonarchsMonarchs (LAK)D40111252553120.00%613.:.350000000000.00%004000.3700
13Niclas AndersenMonarchsMonarchs (LAK)D4101055040225.00%919.:.520000009000.00%013000.2500
14Ondrej KaseMonarchsMonarchs (LAK)LW/RW4011-320126110.00%216.:.56000000000100.00%123000.3000
15Michael PelechMonarchsMonarchs (LAK)RW410152620481512.50%112.:.36000000000100.00%311000.4000
16Vojtech MozikMonarchsMonarchs (LAK)D400016053110.00%413.:.310000001000.00%002000.0000
17Josh ArchibaldMonarchsMonarchs (LAK)LW/RW400000002010.00%106.:.280000000000.00%000000.0000
18Nic DowdMonarchsMonarchs (LAK)C400000012140.00%006.:.2800000000035.00%2020000.0000
Team Total or Average72254166292651758489137448118.25%73117316.3022420951234972041.70%2357650021.120010718112
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1John MuseMonarchsMonarchs (LAK)422086.5%4.25240001712679000.0%040100
Team Total or Average42200.8654.25240001712679000.000040100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name POS Age Birthday Rookie Weight Height No Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Bud HollowayC/LW/RW2829.02.1988Yes201 Lbs6 ft0NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Cameron GaunceD2619.03.1990No210 Lbs6 ft1NoNo2Pro & Farm800,000$0$800,000$Link
Carlo ColaiacovoD3327.01.1983No200 Lbs6 ft1NoNo2Pro & Farm1,000,000$0$1,000,000$Link
David KolomatisD2725.02.1989Yes194 Lbs5 ft11NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
David WohlbergC/LW2618.07.1990 0:07:33No192 Lbs6 ft1NoNo6Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$Link
Gabriel BourqueLW/RW2623.09.1990No192 Lbs5 ft10NoNo1Pro & Farm1,100,000$0$Link
Jeremy GregoireC2104.09.1995Yes187 Lbs6 ft0NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
John McFarlandLW/RW2402.04.1992 1:28:41No211 Lbs6 ft0NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
John MuseG2801.08.1988No185 Lbs5 ft11NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
John RamageD2507.02.1991No200 Lbs6 ft0NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Jordan NolanLW/RW2723.06.1989No221 Lbs6 ft3NoNo2Pro & Farm1,000,000$0$1,000,000$Link
Josh ArchibaldLW/RW2406.10.1992No176 Lbs5 ft10NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Josh ShallaLW2525.09.1991 11:26:23No198 Lbs6 ft1NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
Justin PetersG3030.04.1986No210 Lbs6 ft1NoNo1Pro & Farm1,100,000$0$Link
Konrad Abeltshauser (Out of Payroll)D2402.09.1992No225 Lbs6 ft5NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Kyle CliffordLW2513.01.1991No211 Lbs6 ft2NoNo1Pro & Farm1,000,000$0$Link
Louis-Marc AubryC2411.11.1991 0:14:14No208 Lbs6 ft4NoNo6Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$Link
Lukas SedlakC2325.02.1993Yes198 Lbs6 ft0NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Michael PelechRW2606.10.1990 18:19:44Yes235 Lbs6 ft4NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$
Nic DowdC2627.05.1990No175 Lbs6 ft1NoNo1Pro & Farm1,000,000$0$Link
Niclas AndersenD2828.04.1988Yes207 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Nikita NesterovD2328.03.1993No190 Lbs6 ft0NoNo1Pro & Farm1,100,000$0$Link
Ondrej KaseLW/RW2008.11.1995Yes181 Lbs6 ft0NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Robert CzarnikC2625.01.1990 0:16:24No179 Lbs6 ft0NoNo6Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$Link
Sergey KalininC/LW/RW2517.03.1991 13:52:01Yes201 Lbs6 ft3NoNo1Pro & Farm1,100,000$0$
Vojtech MozikD2326.12.1992 13:52:36No196 Lbs6 ft2NoNo2Pro & Farm1,000,000$0$1,000,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2625.50199 Lbs6 ft15.5769230769231453,846$



5 vs 5 Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Sergey KalininKyle CliffordGabriel Bourque40122
2Bud HollowayJordan NolanOndrej Kase30122
3Louis-Marc AubryJohn McFarlandMichael Pelech20122
4Nic DowdJosh ArchibaldKyle Clifford10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikita NesterovCarlo Colaiacovo40122
2Cameron GaunceNiclas Andersen30122
3Vojtech Mozik20122
4Nikita NesterovCarlo Colaiacovo10122
Power Play Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Sergey KalininKyle CliffordGabriel Bourque60122
2Bud HollowayJordan NolanOndrej Kase40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikita NesterovCarlo Colaiacovo60122
2Cameron GaunceNiclas Andersen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Kyle CliffordSergey Kalinin60122
2Gabriel BourqueJordan Nolan40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikita NesterovCarlo Colaiacovo60122
2Cameron GaunceNiclas Andersen40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Kyle Clifford60122Nikita NesterovCarlo Colaiacovo60122
2Sergey Kalinin40122Cameron GaunceNiclas Andersen40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Kyle CliffordSergey Kalinin60122
2Gabriel BourqueJordan Nolan40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nikita NesterovCarlo Colaiacovo60122
2Cameron GaunceNiclas Andersen40122
Last Minutes Offensive
CenterLeft WingRight WingDefenseDefense
Sergey KalininKyle CliffordGabriel BourqueNikita NesterovCarlo Colaiacovo
Last Minutes Defensive
CenterLeft WingRight WingDefenseDefense
Sergey KalininKyle CliffordGabriel BourqueNikita NesterovCarlo Colaiacovo
Extra Forwards
Normal PowerPlayPenalty Kill
Lukas Sedlak, Louis-Marc Aubry, John McFarlandLukas Sedlak, Louis-Marc AubryJohn McFarland
Extra Defensemen
Normal PowerPlayPenalty Kill
, Vojtech Mozik, Cameron GaunceVojtech Mozik, Cameron Gaunce
Penalty Shots
Kyle Clifford, Sergey Kalinin, Gabriel Bourque, Jordan Nolan, Bud Holloway
Goalie
#1 : John Muse, #2 : Justin Peters


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1MonarchsBears1010000016-500.0001230013102024454943036217326200.00%40100.00%0327940.51%316944.93%358740.23%845190336431
2MonarchsMarlies1100000021121.0002350013102038454943033939222150.00%70100.00%0327940.51%316944.93%358740.23%845190336431
3MonarchsAdmirals1010000016-500.0001230013102039454943026195514700.00%000.00%0327940.51%316944.93%358740.23%845190336431
4MonarchsHeat110000002141721.000213455001310203645494303124982211100.00%40100.00%1327940.51%316944.93%358740.23%845190336431
Vs Conference110000002141721.000213455001310203645494303124982211100.00%40100.00%1327940.51%316944.93%358740.23%845190336431
Since Last GM Reset422000002517840.500254166001310201374549430126732658412216.67%150100.00%1327940.51%316944.93%358740.23%845190336431
Total422000002517840.500254166001310201374549430126732658412216.67%150100.00%1327940.51%316944.93%358740.23%845190336431

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
44W1254166137126732658400
All Games
GPWLOTWOTL SOWSOLGFGA
42200002517
Home Games
GPWLOTWOTL SOWSOLGFGA
211000037
Visitor Games
GPWLOTWOTL SOWSOLGFGA
21100002210
Last 10 Games
WLOTWOTL SOWSOL
220000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
12216.67%150100.00%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4549430131020
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
327940.51%316944.93%358740.23%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
845190336431


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Trade Deadline --- Trades can’t be done after this day is simulated!
Sun, Apr 20Monarchs@MonarchsMarlies1,Monarchs2RECAP
Mon, Apr 21Monarchs@MonarchsBears6,Monarchs1RECAP
Thu, Apr 24Monarchs@MonarchsMonarchs1,Admirals6RECAP
Fri, Apr 25Monarchs@MonarchsMonarchs21,Heat4RECAP



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,170,000$ 530,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT