Pirates

GM : Jiri Hanus Morale : 47 Team Overall : 54
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tomas NosekXX100.00697964645966645773323655504444042540
2Chris BrownXXX100.00697964715964625775333455504646057540
3David DziurzynskiX100.00588058695961615775333556504545039530
4Jordan SzwarzX100.00597261695564625768323557504747048530
5Austen Brassard (R)X100.00597061605471665969333557504444048520
6Jeremy LangloisX100.00616470625065635767343459504444048520
7Ryan MartindaleX100.00627670625849595675343562504444048520
8Remi Elie (R)X100.00607562685754605566313257504444048510
9Cole Cassels (R)X100.00616570655153605259282856504444048490
10Ryan SproulX100.00897898757685845225343365505555049630
11Corey PotterX100.00587666736065686025303058505960052550
12Clark Seymour (R)X100.00597766616257596025293459504747048520
13Mike MooreX100.00587565606063675525263156504545045510
14Aaron Harstad (R)X100.00577364645957625425282656504545048500
Scratches
1Jeff TambelliniXX100.00716774665256606169344259594444048550
TEAM AVERAGE100.0063746866586264575531335851464704853
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Niklas Treutle (R)100.0065726671686764686364485555048630
2Eamon McAdam (R)94.0064555560626466616563655255047620
TEAM AVERAGE97.006564616665666565646457545504863
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Travis Green70687169606180CAN455100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Jordan SzwarzPiratesPirates (ARI)RW4314-22041371423.08%218.:.520000000000.00%0133001.0600
2David DziurzynskiPiratesPirates (ARI)LW4123-31010415266.67%418.:.53000000400100.00%174000.7900
3Austen BrassardPiratesPirates (ARI)RW4022-300511450.00%221.:.1701100010050.00%695000.4700
4Ryan MartindalePiratesPirates (ARI)C4022-300414560.00%619.:.2100000010062.75%5162000.5200
5Chris BrownPiratesPirates (ARI)C/LW/RW4022-33525811660.00%318.:.3701100050069.12%68102000.5400
6Tomas NosekPiratesPirates (ARI)C/LW4101-216109154106.67%021.:.2800000060075.00%4142000.2300
7Ryan SproulPiratesPirates (ARI)D4101-755711859.09%828.:.301010007000.00%165000.1800
8Aaron HarstadPiratesPirates (ARI)D4011-22052100.00%419.:.060000001000.00%001000.2600
9Remi EliePiratesPirates (ARI)LW4011-420118390.00%017.:.50000000300100.00%284000.2800
10Cole CasselsPiratesPirates (ARI)C4000-50071050.00%118.:.2700000060055.81%4311000.0000
11Clark SeymourPiratesPirates (ARI)D4000-32049640.00%525.:.170000006000.00%0311000.0000
12Corey PotterPiratesPirates (ARI)D4000-5101046170.00%1023.:.550000007000.00%017000.0000
13Jeremy LangloisPiratesPirates (ARI)RW4000-62078350.00%218.:.3400000000029.41%1754000.0000
14Mike MoorePiratesPirates (ARI)D4000-317557030.00%821.:.130000006000.00%001000.0000
Team Total or Average5661117-5110365848513150854.58%55116520.8212320690003590060.62%1938352000.2900553010
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Eamon McAdamPiratesPirates (ARI)404086.6%4.27239001712778000.0%040000
Team Total or Average40400.8664.27239001712778000.000040000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name POS Age Birthday Rookie Weight Height No Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Aaron HarstadD2427.04.1992Yes198 Lbs6 ft2NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Austen BrassardRW2314.01.1993Yes188 Lbs6 ft2NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Chris BrownC/LW/RW2503.02.1991 4:24:21No215 Lbs6 ft2NoNo1Pro & Farm800,000$0$Link
Clark SeymourD2318.05.1993Yes202 Lbs6 ft4NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Cole CasselsC2104.05.1995Yes178 Lbs6 ft0NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Corey PotterD3205.01.1984No204 Lbs6 ft3NoNo1Pro & Farm1,500,000$0$Link
David DziurzynskiLW2706.10.1989No215 Lbs6 ft3NoNo1Pro & Farm700,000$0$Link
Eamon McAdamG2224.09.1994 1:02:52Yes185 Lbs6 ft2NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$
Jeff TambelliniC/LW3213.04.1984No186 Lbs5 ft11NoNo1Pro & Farm600,000$0$Link
Jeremy LangloisRW2602.06.1990No173 Lbs6 ft0NoNo3Pro & Farm700,000$0$700,000$700,000$Link
Jordan SzwarzRW2414.05.1992 18:05:04No200 Lbs5 ft11NoNo1Pro & Farm700,000$0$Link
Mike MooreD3112.12.1984No209 Lbs6 ft1NoNo5Farm Only100,000$0$100,000$100,000$100,000$100,000$Link
Niklas TreutleG2529.04.1991 4:10:09Yes185 Lbs6 ft2NoNo1Pro & Farm500,000$0$Link
Remi ElieLW2115.04.1995Yes205 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Ryan MartindaleC2427.10.1991 2:24:59No203 Lbs6 ft3NoNo6Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$Link
Ryan SproulD2301.07.1993No206 Lbs6 ft4NoNo8Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Tomas NosekC/LW2401.09.1992 1:26:27No210 Lbs6 ft3NoNo2Pro & Farm800,000$0$800,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1725.12198 Lbs6 ft24.9411764705882423,529$



5 vs 5 Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Chris BrownTomas NosekAusten Brassard40023
2Ryan MartindaleDavid DziurzynskiJordan Szwarz30023
3Cole CasselsRemi ElieJeremy Langlois20131
4Chris BrownTomas NosekAusten Brassard10131
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SproulCorey Potter40212
2Clark SeymourMike Moore30221
3Aaron HarstadRyan Sproul20131
4Corey PotterClark Seymour10131
Power Play Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Chris BrownTomas NosekAusten Brassard60122
2Ryan MartindaleDavid DziurzynskiJordan Szwarz40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SproulCorey Potter60122
2Clark SeymourMike Moore40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Chris BrownTomas Nosek60122
2Austen BrassardDavid Dziurzynski40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SproulCorey Potter60122
2Clark SeymourMike Moore40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Chris Brown60122Ryan SproulCorey Potter60122
2Tomas Nosek40122Clark SeymourMike Moore40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Chris BrownTomas Nosek60122
2Austen BrassardDavid Dziurzynski40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan SproulCorey Potter60122
2Clark SeymourMike Moore40122
Last Minutes Offensive
CenterLeft WingRight WingDefenseDefense
Chris BrownTomas NosekAusten BrassardRyan SproulCorey Potter
Last Minutes Defensive
CenterLeft WingRight WingDefenseDefense
Chris BrownTomas NosekAusten BrassardRyan SproulCorey Potter
Extra Forwards
Normal PowerPlayPenalty Kill
Jeremy Langlois, Remi Elie, Cole CasselsJeremy Langlois, Remi ElieCole Cassels
Extra Defensemen
Normal PowerPlayPenalty Kill
Aaron Harstad, Mike Moore, Ryan SproulAaron HarstadMike Moore, Ryan Sproul
Penalty Shots
Chris Brown, Tomas Nosek, Austen Brassard, David Dziurzynski, Jordan Szwarz
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1PiratesWolf Pack1010000016-500.00012300510018464839034154125100.00%3166.67%0416959.42%466768.66%305752.63%855290336431
2PiratesBulldogs1010000012-100.0001230051004046483903613417100.00%20100.00%0416959.42%466768.66%305752.63%855290336431
3PiratesMonsters1010000035-200.000358005100374648390311256252150.00%30100.00%0416959.42%466768.66%305752.63%855290336431
4PiratesSharks1010000014-300.0001230051003846483902615217300.00%10100.00%0416959.42%466768.66%305752.63%855290336431
Vs Division2020000049-500.0004711005100754648390572758425120.00%40100.00%0416959.42%466768.66%305752.63%855290336431
Vs Conference2020000049-500.0004711005100754648390572758425120.00%40100.00%0416959.42%466768.66%305752.63%855290336431
Since Last GM Reset40400000617-1100.00061117005100133464839012755103847114.29%9188.89%0416959.42%466768.66%305752.63%855290336431
Total40400000617-1100.00061117005100133464839012755103847114.29%9188.89%0416959.42%466768.66%305752.63%855290336431

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
40L461117133127551038400
All Games
GPWLOTWOTL SOWSOLGFGA
4040000617
Home Games
GPWLOTWOTL SOWSOLGFGA
2020000411
Visitor Games
GPWLOTWOTL SOWSOLGFGA
202000026
Last 10 Games
WLOTWOTL SOWSOL
040000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
7114.29%9188.89%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
46483905100
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
416959.42%466768.66%305752.63%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
855290336431


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Trade Deadline --- Trades can’t be done after this day is simulated!
Sun, Nov 24Pirates@PiratesPirates1,Sharks4RECAP
Mon, Nov 25Pirates@PiratesPirates1,Bulldogs2RECAP
Thu, Nov 28Pirates@PiratesWolf Pack6,Pirates1RECAP
Fri, Nov 29Pirates@PiratesMonsters5,Pirates3RECAP



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
720,000$ 240,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT