Bears

GM : Jan Petrik Morale : 55 Team Overall : 58
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Chris Tierney (R)X100.00604189847676876487454367505858056650
2Brett ConnollyXX100.00764589786876756961454560506363056640
3Mike Brown (A)XX100.00599978747481676557393963506970055620
4Mike Santorelli (A)XXX100.00624168786154856661434461616970053610
5Jack SkilleXX100.00725568765951696558404362506667053590
6Frank Vatrano (R)XXX100.00704567825757676458394659504747056580
7Andrew Copp (R)X100.00694368765350616277404265505454056570
8Joonas KemppainenX100.00634368735960606179404070504848053570
9Jason Dickinson (R)XX100.00756975685360616274384060564444056560
10Max McCormickXX100.00749958595453666372404158504545054550
11Pontus Aberg (R)XX100.00726775675270666065323958564444056550
12Yannick Veilleux (R)X100.00627663635868665670323358504444056530
13Jeff Schultz (C)X100.00778899759680795025363364508071059660
14Tyler Wotherspoon (R)X100.00694592717667796925413773504647056620
15Nathan PaetschX100.00807295628087885125363262506162050620
16Julian MelchioriX100.00714596717963885325373770504945056600
17Dillon SimpsonX100.00607168685968696325343061504848057550
18Danny SyvretX100.00617468626063676325303263505051058540
Scratches
1Joel Lowry (R)X100.00576859645250595464293253504444046490
2Connor Crisp (R)X100.00568356625950605265252750504444046480
3Cody BeachX100.00537556635653605365273147504444046480
4Dylan Labbe (R)X100.00567263685960645325243454504444052510
5Garrett NoonanX100.00617468646060645325242660504747046510
TEAM AVERAGE100.0066657370636370605335376151535205457
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mike McKenna100.0075676678717068717166706967053690
2Anton Forsberg100.0067796775706970707066456966056670
Scratches
1Cedrick Desjardins100.0059516466646362666663624955046610
TEAM AVERAGE100.006766667368676769696559626305266
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Rob Zettler56626566606074CAN485100,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Frank VatranoBearsBears (WSH)C/LW/RW472950071491750.00%215.:.590110000010.00%3180012.8100
2Andrew CoppBearsBears (WSH)C41895009109610.00%215.:.4601100000165.96%4753002.8500
3Brett ConnollyBearsBears (WSH)LW/RW4246600121111218.18%319.:.0700000001111.11%9142001.5700
4Chris TierneyBearsBears (WSH)C4134600497511.11%220.:.0300000050073.08%78102001.0000
5Mike SantorelliBearsBears (WSH)C/LW/RW43146606145621.43%118.:.540000000200.00%2102001.0600
6Mike BrownBearsBears (WSH)LW/RW40335101069160.00%115.:.150000005000.00%261000.9800
7Tyler WotherspoonBearsBears (WSH)D4033600111880.00%825.:.590000004000.00%0010000.5800
8Jack SkilleBearsBears (WSH)LW/RW43031008153920.00%015.:.5010100051050.00%2111000.9500
9Joonas KemppainenBearsBears (WSH)C402212069160.00%213.:.5200000040076.92%3935000.7200
10Nathan PaetschBearsBears (WSH)D201110032000.00%420.:.380000001000.00%001000.4800
11Jason DickinsonBearsBears (WSH)C/LW4101100642825.00%112.:.17000000000100.00%130000.4100
12Danny SyvretBearsBears (WSH)D40113202045310.00%516.:.330000004000.00%012000.3000
13Max McCormickBearsBears (WSH)C/LW410102020611169.09%009.:.4200000000057.14%21130000.5100
14Jeff SchultzBearsBears (WSH)D40117101042850.00%921.:.290000004000.00%009000.2300
15Julian MelchioriBearsBears (WSH)D401140036230.00%222.:.420000005000.00%0113000.2200
16Dylan LabbeBearsBears (WSH)D200027530000.00%115.:.210000000000.00%000000.0000
17Dillon SimpsonBearsBears (WSH)D400015536030.00%315.:.190000000000.00%003000.0000
18Yannick VeilleuxBearsBears (WSH)LW400000043030.00%110.:.12000000000100.00%121000.0000
19Pontus AbergBearsBears (WSH)LW/RW400000035340.00%110.:.12000000000100.00%271000.0000
Team Total or Average7219304960807098961466310813.01%48118916.5212310640003424365.70%20710456010.8200437333
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mike McKennaBearsBears (WSH)220095.7%1.001200024630000.0%022000
2Anton ForsbergBearsBears (WSH)220092.7%2.001202045538000.0%022100
Team Total or Average44000.9411.5024020610168000.000044100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name POS Age Birthday Rookie Weight Height No Trade Force Waivers Contract Type Current Salary Salary RemainingSalary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Andrew CoppC2208.07.1994 23:54:15Yes188 Lbs6 ft1NoNo3Pro & Farm1,100,000$0$1,100,000$1,100,000$Link
Anton ForsbergG2327.11.1992No176 Lbs6 ft2NoNo1Pro & Farm1,100,000$0$Link
Brett ConnollyLW/RW2402.05.1992 5:34:25No181 Lbs6 ft2NoNo1Pro & Farm1,300,000$0$Link
Cedrick DesjardinsG3130.09.1985No192 Lbs6 ft0NoNo1Pro & Farm800,000$0$
Chris TierneyC2201.07.1994 1:04:35Yes195 Lbs6 ft0NoNo2Pro & Farm1,300,000$0$1,300,000$Link
Cody BeachRW2408.08.1992 5:02:22No190 Lbs6 ft5NoNo7Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$Link
Connor CrispLW2208.04.1994Yes226 Lbs6 ft3NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Danny SyvretD3113.06.1985No205 Lbs6 ft0NoNo1Pro & Farm800,000$0$Link
Dillon SimpsonD2310.02.1993No194 Lbs6 ft1NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Dylan LabbeD2108.01.1995Yes194 Lbs6 ft2NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Frank VatranoC/LW/RW2214.03.1994 23:11:12Yes215 Lbs5 ft10NoNo2Pro & Farm1,200,000$0$1,200,000$Link
Garrett NoonanD2528.01.1991No205 Lbs6 ft0NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Jack SkilleLW/RW2919.05.1987No216 Lbs6 ft1NoNo2Pro & Farm1,200,000$0$1,200,000$Link
Jason DickinsonC/LW2103.07.1995Yes185 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Jeff SchultzD3025.02.1986No230 Lbs6 ft6NoNo1Pro & Farm1,700,000$0$Link
Joel LowryLW2414.11.1991Yes180 Lbs6 ft1NoNo10Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Joonas KemppainenC2807.04.1988No213 Lbs6 ft2NoNo1Pro & Farm1,300,000$0$Link
Julian MelchioriD2406.12.1991 5:06:52No214 Lbs6 ft5NoNo1Pro & Farm1,000,000$0$Link
Max McCormickC/LW2401.05.1992No185 Lbs5 ft11NoNo1Pro & Farm1,000,000$0$Link
Mike BrownLW/RW3124.06.1985No205 Lbs5 ft11NoNo1Pro & Farm1,200,000$0$Link
Mike McKennaG3311.10.1983No190 Lbs6 ft2NoNo2Pro & Farm1,100,000$0$1,100,000$Link
Mike SantorelliC/LW/RW3014.12.1985No189 Lbs6 ft0NoNo1Pro & Farm1,200,000$0$Link
Nathan PaetschD3330.03.1983No195 Lbs6 ft1NoNo1Pro & Farm700,000$0$Link
Pontus AbergLW/RW2322.09.1993Yes189 Lbs5 ft11NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Tyler WotherspoonD2312.03.1993 2:02:58Yes210 Lbs6 ft2NoNo1Pro & Farm700,000$0$Link
Yannick VeilleuxLW2322.02.1993 5:08:43Yes206 Lbs6 ft2NoNo9Farm Only100,000$0$100,000$100,000$100,000$100,000$100,000$100,000$100,000$100,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2625.62199 Lbs6 ft14.0384615384615753,846$



5 vs 5 Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Chris TierneyMike SantorelliBrett Connolly40113
2Andrew CoppMike BrownFrank Vatrano31122
3Joonas KemppainenJason DickinsonJack Skille20122
4Max McCormickYannick VeilleuxPontus Aberg9131
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff SchultzTyler Wotherspoon43122
2Julian MelchioriNathan Paetsch36122
3Dillon SimpsonDanny Syvret21122
4Jeff SchultzTyler Wotherspoon0122
Power Play Forward
Line #CenterLeft WingRight WingTime %PHYDFOF
1Chris TierneyMike SantorelliBrett Connolly60122
2Andrew CoppJack SkilleFrank Vatrano40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler WotherspoonJulian Melchiori60122
2Jeff SchultzNathan Paetsch40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joonas KemppainenMike Brown50122
2Chris TierneyJack Skille50122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff SchultzTyler Wotherspoon50122
2Nathan PaetschJulian Melchiori50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joonas Kemppainen60122Jeff SchultzTyler Wotherspoon60122
2Chris Tierney40122Nathan PaetschJulian Melchiori40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Chris TierneyMike Santorelli50122
2Joonas KemppainenMike Brown50122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Jeff SchultzTyler Wotherspoon50122
2Nathan PaetschJulian Melchiori50122
Last Minutes Offensive
CenterLeft WingRight WingDefenseDefense
Chris TierneyMike SantorelliBrett ConnollyTyler WotherspoonJulian Melchiori
Last Minutes Defensive
CenterLeft WingRight WingDefenseDefense
Chris TierneyMike SantorelliBrett ConnollyTyler WotherspoonJulian Melchiori
Extra Forwards
Normal PowerPlayPenalty Kill
Brett Connolly, Mike Santorelli, Mike BrownFrank Vatrano, Brett ConnollyJoonas Kemppainen
Extra Defensemen
Normal PowerPlayPenalty Kill
Tyler Wotherspoon, Julian Melchiori, Danny SyvretTyler WotherspoonTyler Wotherspoon, Julian Melchiori
Penalty Shots
Mike Santorelli, Jason Dickinson, Pontus Aberg, Brett Connolly, Frank Vatrano
Goalie
#1 : Anton Forsberg, #2 : Mike McKenna


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1BearsSenators1100000021121.00022400568042554051022151738200.00%10100.00%0568268.29%416860.29%395768.42%1047074306131
2BearsWolves1100000063321.0006101600568030554051033194192150.00%20100.00%0568268.29%416860.29%395768.42%1047074306131
3BearsIceHogs1100000051421.000581300568038554051022111223100.00%10100.00%0568268.29%416860.29%395768.42%1047074306131
4BearsMonarchs1100000061521.000610160056803655405102434918400.00%20100.00%0568268.29%416860.29%395768.42%1047074306131
Vs Conference1100000021121.00022400568042554051022151738200.00%10100.00%0568268.29%416860.29%395768.42%1047074306131
Since Last GM Reset440000001961381.00019304900568014655405101014882989111.11%60100.00%0568268.29%416860.29%395768.42%1047074306131
Total440000001961381.00019304900568014655405101014882989111.11%60100.00%0568268.29%416860.29%395768.42%1047074306131

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
48W419304914610148829800
All Games
GPWLOTWOTL SOWSOLGFGA
4400000196
Home Games
GPWLOTWOTL SOWSOLGFGA
220000084
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2200000112
Last 10 Games
WLOTWOTL SOWSOL
400000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
9111.11%60100.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
55405105680
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
568268.29%416860.29%395768.42%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1047074306131


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DateMatchup Result Detail
Trade Deadline --- Trades can’t be done after this day is simulated!
Sun, Apr 20Bears@BearsBears5,IceHogs1RECAP
Mon, Apr 21Bears@BearsBears6,Monarchs1RECAP
Thu, Apr 24Bears@BearsSenators1,Bears2RECAP
Fri, Apr 25Bears@BearsWolves3,Bears6RECAP



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,960,000$ 680,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT