FlyersPhiladelphia Flyers
6-12-5, 17pts · 15th in Eastern Conference
Player Stats
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Shane PintoFlyersFlyers12C19413176180267020615.71%1822.:.02123011801048.07%67200000.8101
2Marcus FolignoFlyersFlyers17LW/RW23871533958360133713.33%421.:.201121121042047.73%4400000.6100
3James van RiemsdykFlyersFlyers21LW/RW2341115-680247022465.71%518.:.1303300000140.00%2500000.7203
4Joe VelenoFlyersFlyers90C2357121401037134213.51%516.:.092240111021047.00%50000000.6501
5Evgenii DadonovFlyersFlyers63LW/RW237512-440343144616.28%217.:.3812300040139.29%5600100.5900
6Ryan StromeFlyersFlyers16C/RW232810-960275921383.39%517.:.2512300002047.61%43900000.5003
7Jalen ChatfieldFlyersFlyers5D23099-4803212590.00%5022.:.22011000104000.00%000000.3500
8Patrik LaineFlyersFlyers29LW/RW23628-2401856134710.71%118.:.4310100090037.10%6200000.3703
9Nathan WalkerFlyersFlyers72LW233361255813910237.69%714.:.01011000660045.45%3300000.3703
10Kyle BurroughsFlyersFlyers38D23336-435571110427.27%2915.:.2800010144000.00%000000.3400
11Noah JuulsenFlyersFlyers47D23156-640092741614.29%4421.:.1800000089000.00%000000.2400
12Adam BoqvistFlyersFlyers34D221451809125138.33%1515.:.3211200015000.00%000000.2900
13Jani HakanpaaFlyersFlyers2D2014513004912358.33%3018.:.4900000059000.00%000000.2700
14Vincent DesharnaisFlyersFlyers73D23145221571103410.00%4620.:.2300000093000.00%000000.2100
15Tomas NosekFlyersFlyers24C/LW23134-2002276203.70%010.:.51011000300052.46%6100000.3200
16Liam O'BrienFlyersFlyers98C23033-3201042174110.00%208.:.28000000100040.10%19700000.3100
17Miles WoodFlyersFlyers28LW21303-317542041215.00%008.:.1900000010150.00%1400000.3400
18Christian FischerFlyersFlyers66C/RW18202-3405123916.67%007.:.1800000000033.33%600000.3000
19Nicolas DeslauriersFlyersFlyers20LW92022206100320.00%007.:.5600000000060.00%1500000.5600
20Adam EdstromFlyersPhantoms (PHI)84C/LW/RW201110032000.00%012.:.1300000050025.00%400000.8200
21Dennis GilbertFlyersFlyers48D4011040102000.00%219.:.1600000018000.00%000000.2600
Team Total or Average4125492146-29297356655861634469.22%26516:16816242358366346.47%212400100.44014
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Semyon VarlamovFlyersFlyers724091.6%3.1933900182140010.0%0610100
2Vitek VanecekFlyersFlyers723192.9%2.77368601723900080.0%559110
3Frederik AndersenFlyersFlyers1225491.2%3.23688223742200177.8%9122111
Team Total or Average26612591.8%3.09139782728750020.786142321321
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1FlyersPenguins1100000053221.000561100041031619603914263133.33%2150.00%135575846.83%46598747.11%16835547.32%211324813666.7%16.1%92.3%108.4LUCKY
2FlyersIslanders2110000055020.5005914001310621923200732414595240.00%7185.71%035575846.83%46598747.11%16835547.32%42275016271342.9%8.1%93.2%101.2DULL
3FlyersDevils1100000032121.00036900120024681002851027100.00%50100.00%035575846.83%46598747.11%16835547.32%211324713760.0%12.5%92.9%105.4LUCKY
4FlyersHurricanes1000010045-110.50046100012103681215147171620200.00%8187.50%035575846.83%46598747.11%16835547.32%221327714650.0%11.1%89.4%100.5FUN
5FlyersLightning1010000024-200.00024600101016385046101428200.00%7357.14%035575846.83%46598747.11%16835547.32%181027814666.7%12.5%91.3%103.8LUCKY
6FlyersJets1010000046-200.0004610102020225980401315393133.33%5180.00%035575846.83%46598747.11%16835547.32%171027814637.5%18.2%85.0%103.2FUN
7FlyersPanthers30300000513-800.00058130022107121302001214747767114.29%21576.19%035575846.83%46598747.11%16835547.32%60377825401733.3%7.0%89.3%96.3Unlucky
8FlyersSenators2110000023-120.500246010020371113130752757564125.00%15286.67%035575846.83%46598747.11%16835547.32%36225717251150.0%5.4%96.0%101.4DULL
9FlyersCanadiens1000000112-110.50012300100026896836101038100.00%50100.00%035575846.83%46598747.11%16835547.32%251725814633.3%3.8%94.4%98.3DULL
10FlyersMaple Leafs1100000042221.00047110031002212460531215342150.00%50100.00%035575846.83%46598747.11%16835547.32%191328811460.0%18.2%96.2%114.4LUCKY
11FlyersBlues2020000048-400.0004812102020391511130923638506116.67%19478.95%035575846.83%46598747.11%16835547.32%37225516261142.9%10.3%91.3%101.6LUCKY
12FlyersPredators2010000138-510.250369002010552120144631212501000.00%40100.00%135575846.83%46598747.11%16835547.32%45295016281427.3%5.5%87.3%92.8Unlucky
13FlyersWild1010000024-200.0002460002003031116033181630200.00%8187.50%035575846.83%46598747.11%16835547.32%201225714640.0%6.7%87.9%94.5Unlucky
14FlyersOilers1000010034-110.5003690011102268803961236100.00%6183.33%035575846.83%46598747.11%16835547.32%181130813550.0%13.6%89.7%103.4FUN
15FlyersFlames1010000034-100.000358002100291271002151734200.00%6266.67%035575846.83%46598747.11%16835547.32%221522714760.0%10.3%81.0%91.3FUN
16FlyersStars1000000134-110.50034700030026712575016627200.00%30100.00%035575846.83%46598747.11%16835547.32%231625815742.9%11.5%92.0%103.5LUCKY
17FlyersKraken1100000010121.000123010100401114150216238400.00%10100.00%035575846.83%46598747.11%16835547.32%2819186137100.0%2.5%100.0%102.5DULL
_Vs Division531001001715270.70017274400311301533962511187474413211327.27%22386.36%135575846.83%46598747.11%16835547.32%1086812739683353.8%11.1%92.0%103.1LUCKY
_Vs Conference1356001013139-8120.4623152830110147032594126101951815318736427622.22%751382.67%135575846.83%46598747.11%16835547.32%2691693451081758149.0%9.5%92.5%102.0LUCKY
_Since Last GM Reset23612002035477-23170.37054931472219221305881742181902087726530566857814.04%1272282.68%235575846.83%46598747.11%16835547.32%48430660218931414745.5%9.2%91.2%100.4LUCKY
Total23612002035477-23170.37054931472219221305881742181902087726530566857814.04%1272282.68%235575846.83%46598747.11%16835547.32%48430660218931414745.5%9.2%91.2%100.4LUCKY

Puck Time
Offensive Zone 21
Neutral Zone 13
Defensive Zone 26
Puck Time
Offensive Zone Start 758
Neutral Zone Start 355
Defensive Zone Start 987
Puck Time
With Puck 27
Without Puck 32
Faceoffs
Faceoffs Won 988
Faceoffs Lost 1112
Team Average Shots after League Average Shots after
1st Period 7.610.69
2nd Period 17.021.35
3rd Period 25.332.03
Overtime 26.232.64
Goals in Team Average Goals after League Average Goals after
1st Period 0.81.08
2nd Period 1.82.13
3rd Period 2.32.97
Overtime 2.33.07
Even Strenght Goal 42
PP Goal 8
PK Goal 2
Empty Net Goal 2
Home Away
Win 51
Lost 75
Overtime Lost 14
PP Attempt 57
PP Goal 8
PK Attempt 127
PK Goal Against 22
Home
Shots For 25.6
Shots Against 38.1
Goals For 2.3
Goals Against 3.3
Hits 29.0
Shots Blocked 11.5
Pim 13.3