FlyersPhiladelphia Flyers
28-45-3, 59pts · 15th in Eastern Conference
Player Stats
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team Name# POS GP G A P +/- PIM PIM5 HIT SHT OSB OSM SHT% SB MP PPG PPA PPP PKG PKA PKP PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS
1Patrik LaineFlyersFlyers29LW/RW66303161880252577617311.67%1218.:.50851300007341.51%10600010.9802
2Marcus FolignoFlyersFlyers17LW/RW73263157-299152522527017510.32%2420.:.2478150111952250.99%15100000.7701
3Joe VelenoFlyersFlyers90C74162844-722066190541468.42%2720.:.49312150222835147.52%227900000.5712
4Miles WoodFlyersFlyers28LW76222143-134151322095712410.53%2220.:.2967132022611346.28%12100200.5501
5Ryan JohansenFlyersFlyers92C61132942-216051176561297.39%1318.:.2936900001152.68%153200000.7403
6Matt BenningFlyersFlyers5D6862531-25801558322627.23%10821.:.332810011227100.00%000000.4200
7Andreas AthanasiouFlyersFlyers89C/LW/RW7581826-31206147481265.44%413.:.3605500071043.47%55900000.5102
8Matt GrzelcykFlyersFlyers48D635182334201095615438.93%8018.:.03325000123000.00%000000.4000
9Keegan KolesarFlyersFlyers55RW7681220-13500148131411026.11%912.:.41033011710149.30%7100000.4100
10Liam O'BrienFlyersFlyers98C738917-344014480315310.00%1011.:.220001011612043.38%117100010.4100
11Tomas NosekFlyersFlyers24C/LW5851116-22078716555.75%1011.:.530331011781049.82%56000000.4600
12Vincent DesharnaisFlyersFlyers73D7521113-168101454816264.17%11118.:.03000000260100.00%000000.1900
13Adam BoqvistFlyersFlyers34D6311112-580243810242.63%7014.:.3901100045000.00%000000.2600
14Andreas EnglundFlyersFlyers3D433912244109516151318.75%4715.:.1510100067000.00%000000.3700
15Nicolas DeslauriersFlyersFlyers20LW764812-8475957624565.26%609.:.2801100021144.19%8600000.3301
16Kyle BurroughsFlyersFlyers38D733912-209402564822306.25%11417.:.52000011235110.00%000000.1800
17Austin WatsonFlyersFlyers25C/LW/RW72448-45610776316396.35%508.:.23000000231040.73%32900000.2600
18Justin BrazeauFlyersFlyers95LW/RW2725710063410225.88%209.:.4210100000050.00%1400000.5300
19Brendan LemieuxFlyersFlyers22LW374264100271910621.05%008.:.1100000001036.36%2200000.4000
20Ryan LombergFlyersPhantoms (PHI)94LW/RW9112-42051061210.00%108.:.5000000000050.00%400000.5000
21Louis CrevierFlyersFlyers46D71120801461116.67%1017.:.4600000014000.00%000000.3200
22Ben HarpurFlyersFlyers2D181012602274514.29%2612.:.5000000014000.00%000000.0900
23Adam EdstromFlyersPhantoms (PHI)84C/LW/RW200000003120.00%010.:.0600000010033.33%600000.0000
24Byron FroeseFlyersPhantoms (PHI)11C300000005010.00%108.:.5800000000033.33%2700000.0000
Team Total or Average1254172293465-93725551856202361414108.50%71015:3534619546102174261347.41%700100220.48112
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Martin JonesFlyersFlyers521728291.0%3.33271921151167701171.4%74628261
2Kaapo KahkonenFlyersFlyers351115192.4%2.7617846182107600283.3%62845530
3Gustavs GrigalsFlyersPhantoms (PHI)302081.5%9.09660010540000.0%023000
Team Total or Average872843391.5%3.1145038223327530130.769137473791
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT GF% SH% SV% PDO PDOBRK
1FlyersPenguins413000001213-120.2501223350017401032653240154613410811436.36%16568.75%01312270048.59%1469315646.55%575119947.96%744610932552650.0%11.7%91.6%103.2LUCKY
2FlyersIslanders3210000078-140.66771219012230821830340832540854125.00%20575.00%01312270048.59%1469315646.55%575119947.96%65397323412066.7%8.5%90.4%98.9Unlucky
3FlyersRangers2110000078-120.50071421003130532411180721712454125.00%6183.33%01312270048.59%1469315646.55%575119947.96%41255016281346.2%13.2%88.9%102.1FUN
4FlyersDevils422000001211140.500122133103540124374938014845498913430.77%21576.19%01312270048.59%1469315646.55%575119947.96%835210334532457.1%9.7%92.6%102.2LUCKY
5FlyersHurricanes3210000099040.667918270042309535293101203446816233.33%17288.24%01312270048.59%1469315646.55%575119947.96%63407524411850.0%9.5%92.5%102.0LUCKY
6FlyersLightning30300000713-600.000713200031309720334401423746816116.67%16381.25%11312270048.59%1469315646.55%575119947.96%54348425411837.5%7.2%90.8%98.1Unlucky
7FlyersJets2020000048-400.000471100202071251630085282665200.00%13561.54%11312270048.59%1469315646.55%575119947.96%42265114251257.1%5.6%90.6%96.2Unlucky
8FlyersCapitals422000001013-340.5001019290025301174729410137374111911218.18%12375.00%01312270048.59%1469315646.55%575119947.96%815010133572644.4%8.5%90.5%99.1Unlucky
9FlyersPanthers30300000715-800.000712191022308633213201344344938112.50%21671.43%21312270048.59%1469315646.55%575119947.96%62387923381740.0%8.1%88.8%96.9Unlucky
10FlyersBruins30300000714-700.00071320004210853222310972920709222.22%9277.78%01312270048.59%1469315646.55%575119947.96%68457122401929.4%8.2%85.6%93.8Unlucky
11FlyersSenators2100100075241.00071320000511461218142754031597114.29%13284.62%01312270048.59%1469315646.55%575119947.96%35195917261166.7%15.2%93.3%108.6LUCKY
12FlyersCanadiens2100100084441.00081321003311722018295812519605120.00%6183.33%01312270048.59%1469315646.55%575119947.96%48324714271470.0%11.1%95.1%106.2LUCKY
13FlyersSabres20200000310-700.0003580030005620221401073234575240.00%17476.47%01312270048.59%1469315646.55%575119947.96%39245516251114.3%5.4%90.7%96.0Unlucky
14FlyersMaple Leafs30300000312-900.0003690010209626313901053324756116.67%11281.82%01312270048.59%1469315646.55%575119947.96%66437224401816.7%3.1%88.6%91.7Unlucky
15FlyersBlues2020000006-600.00000000000053122417081111836800.00%9277.78%01312270048.59%1469315646.55%575119947.96%4125511727120.0%0.0%92.6%92.6DULL
16FlyersRed Wings3210000087140.6678132100431093333327010729328710110.00%16287.50%01312270048.59%1469315646.55%575119947.96%71466825392058.3%8.6%93.5%102.1DULL
17FlyersBlackhawks2110000064220.50061117004200612618170592425544125.00%8187.50%01312270048.59%1469315646.55%575119947.96%45284715271362.5%9.8%93.2%103.1LUCKY
18FlyersBlue Jackets30100101912-320.333916250024308527321991062420857228.57%10280.00%01312270048.59%1469315646.55%575119947.96%68447823412041.2%10.6%88.7%99.3FUN
19FlyersPredators2010000179-210.250713200003406812163798930205933100.00%10280.00%01312270048.59%1469315646.55%575119947.96%45295215261236.4%10.3%89.9%100.2FUN
20FlyersWild2200000084441.00081523003230542217150662924605120.00%12375.00%01312270048.59%1469315646.55%575119947.96%42275015271387.5%14.8%93.9%108.8LUCKY
21FlyersOilers2020000025-300.000235000200521715200622112526116.67%60100.00%01312270048.59%1469315646.55%575119947.96%39245516251216.7%3.8%91.9%95.8DULL
22FlyersFlames2110000077020.5007132000322055191719068302443300.00%12191.67%01312270048.59%1469315646.55%575119947.96%41285215261253.8%12.7%89.7%102.4FUN
23FlyersCanucks2000101075241.000711180011328323232913672110518112.50%5260.00%01312270048.59%1469315646.55%575119947.96%52354715281466.7%8.4%92.5%101.0DULL
24FlyersAvalanche2110000035-220.50034700111071132731065241861700.00%9188.89%01312270048.59%1469315646.55%575119947.96%43285116241142.9%4.2%92.3%96.5DULL
25FlyersKings2020000037-400.000369001020471317170661714604125.00%7185.71%01312270048.59%1469315646.55%575119947.96%43294915261325.0%6.4%89.4%95.8Unlucky
26FlyersCoyotes2110000056-120.5005914001310611722220782134539333.33%16475.00%01312270048.59%1469315646.55%575119947.96%41255015271350.0%8.2%92.3%100.5DULL
27FlyersStars2110000085320.50081220005300672725150973220616233.33%9277.78%01312270048.59%1469315646.55%575119947.96%40265517241166.7%11.9%94.8%106.8LUCKY
28FlyersDucks2110000087120.5008142200431054221715061182266700.00%10190.00%01312270048.59%1469315646.55%575119947.96%43274717281357.1%14.8%88.5%103.3FUN
29FlyersSharks2020000025-300.000246001010681630220781314358112.50%6183.33%01312270048.59%1469315646.55%575119947.96%46304715261320.0%2.9%93.6%96.5DULL
30FlyersKraken2110000066020.50061016102130671827220641312604125.00%60100.00%01312270048.59%1469315646.55%575119947.96%45284616281445.5%9.0%90.6%99.6FUN
31FlyersGolden Knights2110000035-220.500358012100542518110561314599111.11%70100.00%01312270048.59%1469315646.55%575119947.96%43274717281428.6%5.6%91.1%96.6Unlucky
_Vs Division231011001016674-8220.478661231891117262306592142332059820243242612561628.57%1022377.45%01312270048.59%1469315646.55%575119947.96%47829959218831715149.5%10.0%91.0%101.0FUN
_Vs Conference44142602101116154-38340.386116211327213742352129041043143516166851149211941122623.21%2114578.67%31312270048.59%1469315646.55%575119947.96%924584113035959728345.2%9.0%90.8%99.8FUN
_Since Last GM Reset76244503112195248-53590.388195348543326766584227671776077438281085679920692054220.49%3567180.06%41312270048.59%1469315646.55%575119947.96%162310361934615102949246.4%8.6%91.2%99.7DULL
Total76244503112195248-53590.388195348543326766584227671776077438281085679920692054220.49%3567180.06%41312270048.59%1469315646.55%575119947.96%162310361934615102949246.4%8.6%91.2%99.7DULL

Puck Time
Offensive Zone 21
Neutral Zone 13
Defensive Zone 25
Puck Time
Offensive Zone Start 2700
Neutral Zone Start 1199
Defensive Zone Start 3156
Puck Time
With Puck 28
Without Puck 32
Faceoffs
Faceoffs Won 3356
Faceoffs Lost 3699
Team Average Shots after League Average Shots after
1st Period 9.410.69
2nd Period 19.421.35
3rd Period 29.632.03
Overtime 30.132.64
Goals in Team Average Goals after League Average Goals after
1st Period 0.91.08
2nd Period 1.82.13
3rd Period 2.52.97
Overtime 2.63.07
Even Strenght Goal 146
PP Goal 42
PK Goal 4
Empty Net Goal 3
Home Away
Win 1315
Lost 2520
Overtime Lost 12
PP Attempt 205
PP Goal 42
PK Attempt 356
PK Goal Against 71
Home
Shots For 29.9
Shots Against 37.0
Goals For 2.6
Goals Against 3.3
Hits 27.2
Shots Blocked 11.3
Pim 10.5